Semestral

Number Theory

Instructor: Ramdin Mawia Marks: 50 Course: M1 Time: May 2, 2024: 10:00–13:00.	Instructor: Ramdin Mawia	Marks: 50	Course: M1	Time: May 2, 2024; 10:00-13:00.	
---	--------------------------	-----------	------------	---------------------------------	--

Attempt any FIVE among problems 1–6.¹ Problem 7 is a bonus problem. Each question, except the bonus problem, carries 10 marks.

- 1. Prove or disprove:
 - i. For $n \in \mathbb{Z}$, any odd prime divisor of $n^4 + 1$ is of the form 8k + 1 for some $k \in \mathbb{N}$. 6 ii. The sum of digits of $7^n - 6n - 1$ (in base 10) is divisible by 9 for any $n \in \mathbb{N}$. 4
- 2. Let *p* be an odd prime. Prove or disprove:
 - i. The integer $n^{p-1} + (p-1)^n$ is not a prime for any integer $n > 1, n \not\equiv 0 \pmod{p}$.
 - ii. If $p \equiv -1 \pmod{4}$ then $N^2 \equiv 1 \pmod{p}$, where N is the product of all even positive integers 4 less than *p*.
- 3. Describe all primes p for which 10 is a quadratic residue mod p.
- 4. Let $\alpha > 0$, and let $f, g : [1, \infty) \to \mathbb{C}$ be related by $g(x) = \sum_{n \leq x^{1/\alpha}} \frac{1}{n^{\alpha}} f\left(\frac{x}{n^{\alpha}}\right)$. Prove that $f(x) = \sum_{n \leqslant x^{1/\alpha}} \frac{\mu(n)}{n^{\alpha}} g\left(\frac{x}{n^{\alpha}}\right)$ for all $x \geqslant 1.$ 2+3+5=10 i. Let $f(x) = \sum_{\substack{(u,v)=1\\vvv \in x}} 1/uv$ and $g(x) = \sum_{uv \leq x} 1/uv$. Show that $g(x) = \sum_{n \le x^{1/2}} \frac{1}{n^2} f\left(\frac{x}{n^2}\right).$
 - ii. Using i. or otherwise, prove that

$$f(x) = \frac{3}{\pi^2} \log^2 x + O(\log x).$$

5. Find all pairs (x, y) of rational integers satisfying $x^3 = y^2 + 2$.

10

1

2

6

10

- 6. Let d < 0 be a squarefree integer and let $A = \mathbb{Z}[\sqrt{d}]$. For integers a, b with a > 0, let $I_{a,b}$ denote the additive subgroup $a\mathbb{Z} + (b + \sqrt{d})\mathbb{Z}$ of A.
 - i. Prove that $I_{a,b}$ is an ideal of A if and only if $b^2 \equiv d \pmod{a}$. 1 ii. Prove that $|A/I_{a,b}| = a$. 2
 - iii. If I is a principal ideal of A prove that |A/I| is either a square or $\ge |d|$. 5 2
 - iv. Conclude that if A is a PID then d = -1 or d = -2.

^[BONUS]7. Let p be a prime, and let $|\cdot|_p$ denote the p-adic absolute value on \mathbb{Q} . [‡]

- i. Describe the valuation ring $A_p := \{x \in \mathbb{Q} : |x|_p \leq 1\}.$
- ii. Show that A_p is integrally closed.
- iii. Prove that A_p is a local ring, with $A_p/\mathfrak{m}_p \cong \mathbb{Z}/p\mathbb{Z}$, where \mathfrak{m}_p is the unique maximal ideal of 2 A_p .

The End

 $^{^{\}P}$ You may use results proved in class, unless you are asked to prove the result itself.

[§]*Hint.* What is |A/I| when I is principal?

[‡]This is a bonus problem. You may attempt it in addition to five other problems.